Tetrahedron Letters No. 51, pp 4745-4748, 1976. Pergamon Press. Printed in Great Britain.

TOTAL SYNTHESIS OF d1-PEDERAMIDE

Kazuo Tsuzuki, Takahiro Watanabe, Mitsutoshi Yanagiya and Takeshi Matsumoto

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan

(Received in Japan 14 October 1976: received in UK for publication 2 November 1976)

We report here a stereochemically controlled total synthesis of pederamide 1^{1} , a main hydrolysis product of the structurally unique and powerful insect poison pederin 2^{2} , in d1-form.

Analysis of structural and stereochemical features of pederamide indicated that it would be synthesized through selective opening of the tetrahydrofuran ring of a 2,7-dioxabicyclo[3.2.1]octane derivative 8, which in turn seemed obtainable stereoselectively from cis-3-methyl- γ -valero-lactone 3. Treatment of 3^3 with 1 equiv of lithium diisopropylamide at -78° in tetrahydrofuran, followed by alkylation with 1.2 equiv of propargyl bromide gave lactone 4^4 [mp 66- 67° , $6_{\rm CDC1}$ 1.15 (3H, d, J=7Hz), 1.25 (3H, d, J=7Hz), 2.00 (1H, t, J=2Hz), 4.60 (1H, qui, J=7Hz)] as a single product in 93% yield. Stereochemistry of the propargyl group was confirmed by the nmr spectral data of 4 in the presence of Eu(fod) 3^5 . Reduction of 4 with LiA1H $_4$ in ether at reflux afforded dio1 5^4) [95%

mp 53-54°, $\delta_{\rm CDCl_3}$ 2.33 (2H, dd, J=7and3Hz)]. Conversion of 5 to ester 6^4) [mp 67-68°, $\delta_{\rm CDCl_3}$ 2.51 (2H, d, J=7Hz)] was accomplished in 72% overall yield by successive treatment with (1) DHP-TsOH-CH₂Cl₂, (2) nBuLi-ClCO₂Me-THF at -78° and (3) TsOH-MeOH. Reaction of 6 with triethylamine at reflux gave a Z-E mixture of unsaturated ester $7^{4/6}$, [Z/E=1/3 by nmr. $\nu_{\rm max}^{\rm neat}$ 1690, 1640cm⁻¹, $\delta_{\rm CDCl_3}$ 4.83(Z) and 5.23(E) (1H, bs)] which on oxidation with m-chloroperbenzoic acid in CH₂Cl₂ yielded an epimeric mixture at C-2 of the 2,7-dioxabicyclo[3.2.1]octane derivative 8^4 [1:1 by nmr. $\nu_{\rm max}^{\rm neat}$ 1750cm⁻¹, $\delta_{\rm CDCl_3}$ 3.78 and 3.80 (3H, s)] in 49% overall yield. The C-2 position of this and the following ester intermediates was susceptible to isomerization by acids and bases.

The compound 8 was transformed stereoselectively into a tetrahydropyran 9^{4} [mp 138-139°, 1:1 epimeric mixture at C-2, $\delta_{\rm CDC1_3}$ 3.26 and 3.30 (3H, s), 3.48 (2H, d, J=7Hz), 4.31 (1H, bs)] in 58% overall yield through the following sequence of reactions: (1) Bz(benzoy1)C1-Py (2) selective opening of tetrahydrofuran ring with 1N HC1-THF at reflux (3) formation of dibenzoate with BzC1-Py (4) methylation (MeOH-AcCl) and (5) debenzoylation (MeOH-MeONa). Selective tosylation of the primary hydroxy group of $\underline{9}$ and subsequent treatment with phenylselenolate anion⁷⁾ in absolute methanol gave a 55% overall yield of selenide $\underbrace{10}^{4}$ [δ_{CDCl_3} 2.78 (2H, d, J=7Hz)]. Oxidation of $\frac{10}{10}$ with 30% H_2O_2 in tetrahydrofuran followed by elimination of phenylselenic acid in a mixture of benzene and triethylamine (1:1) at reflux afforded an epimeric mixture (1:1) at C-2 of methyl pederate 11, [δ_{CDC1_3} 2.19 (1H, dq, J=3and7Hz), 2.33 (2H, bs), 3.27 (3H, s), 3.80 (3H, s), 3.89 (1H, dq, J=3and7Hz), 4.31 (1H, s), 4.68, 4.80 (each 1H, bs)] and 12^{4} [δ_{CDC1_3} 1.90 and 2.73 (2H, AB, J_{AB} =14Hz, J_{AX} =2Hz, J_{RX} =0Hz), 3.31 (3H, s), 4.38 (III, s)] in 78% overall yield. The mixture gave on oxidation with the Collins reagent a single ketone 13^{4}) [δ_{CDC1_3} 2.30 and 2.47 (2H, AB, J_{AB} =14Hz, J_{AX} =2Hz, J_{BX} =0Hz)] in 90% yield. Reduction of 13 with NaBH, in methanol at -78° proceeded in a stereoselective manner, giving methyl pederate 11 in 75% yield together with a 15% yield of 12. Conversion of 11 to amide acetate 14⁴⁾ [mp 140-141°, δ_{CDC1_3} 2.20 (3H, s), 2.40 (2H, bs)] was effected without concomitant epimerization at C-2 in 76% overall yield by successive treatment with (1) $MeOH-H_2O-NEt_3$ at reflux for 24hr (2) Ac_2O-Py and (3) 6-ch1oro-1-(p-ch1orobenzenesulfonyloxy)-benzotriazole⁸⁾

 $-{\rm NEt_3}-{\rm NH_3}-{\rm THF}$. Finally deacetylation of 14 with NH₃ in methanol afforded quantitatively racemic pederamide (mp 129-130°), spectral data (ir, nmr, ms) of which were completely identical with those of the natural material.

REFERENCES AND FOOTNOTES

- (1) T. Matsumoto, M. Yanagiya, S. Maeno and S. Yasuda, Tetrahedron Lett., 6297 (1968).
- (2) A. Furusaki, T. Watanabe, T. Matsumoto and M. Yanagiya, Tetrahedron Lett., 6301 (1968). For physiological activity see M. Pavan, Sunto delle attuali conoscenze sulla pederina, Universita' di Pavia (1975).
- (3) Compound 3^{3a)} was prepared stereoselectively from trans-2,3-epoxybutane in 48% overall yield through a new sequence of reactions: (1) alkylation with dimethyl malonate (MeOH-MeONa) (2) hydrolysis (KOHaq) (3) decarboxylation (Py at reflux).

 3a) J. F. Laporte and R. Rambaud, C. R. Acad. Sci., Ser. C, 262, 1095 (1966).
- (4) Satisfactory elementary analytical values as well as ms, ir, and nmr spectral data were obtained for this compound.
- (5) The nmr spectral data in the presence of Eu(fod)₃ of 4 indicated J_{ab}=10Hz (see formula 4). Configuration of the propargyl group was determined by comparing the value of J_{ab} with the corresponding values of related γ-lactones^{5a}.
 5a) M. Petzilka, D. Felix and A. Eschenmoser, Helv. Chim. Acta., 56, 2950 (1973).
- (6) Acetate of 7 exhibited dq (3and7Hz) peaks centered at δ 4.87. The alternative tetrahydropyranoid structure for 7 was therefore excluded.
- (7) K. B. Sharpless and M. W. Young, J. Org. Chem., <u>40</u>, 947 (1975).
- (8) M. Itoh, H. Nojima, J. Notani, D. Hagiwara and K. Takai, Tetrahedron Lett., 3089 (1974).